2月3日,智谱正式发布并开源GLM-OCR。
据介绍,该模型仅0.9B参数规模,支持vLLM、SGLang和Ollama部署,显著降低推理延迟与算力开销,适合高并发与边缘部署。
据介绍,该模型仅0.9B参数规模,支持vLLM、SGLang和Ollama部署,显著降低推理延迟与算力开销,适合高并发与边缘部署。
官方表示,在训练策略方面,GLM-OCR率先将多Tokens预测损失(MTP)引入OCR模型训练过程,以增强损失信号密度并提升模型学习效率。
2月3日,智谱正式发布并开源GLM-OCR。
据介绍,该模型仅0.9B参数规模,支持vLLM、SGLang和Ollama部署,显著降低推理延迟与算力开销,适合高并发与边缘部署。
据介绍,该模型仅0.9B参数规模,支持vLLM、SGLang和Ollama部署,显著降低推理延迟与算力开销,适合高并发与边缘部署。
官方表示,在训练策略方面,GLM-OCR率先将多Tokens预测损失(MTP)引入OCR模型训练过程,以增强损失信号密度并提升模型学习效率。