在理论物理研究领域,一项关于胶子散射振幅的新成果引发关注。由普林斯顿高等研究院、哈佛大学、剑桥大学、范德堡大学以及相关科研团队的研究者共同完成的一篇预印本论文,已在学术平台对外公布,并计划向期刊投稿。该研究聚焦于胶子这一传递夸克之间强相互作用的关键粒子,围绕其相关的散射振幅展开深入探索。
散射振幅在粒子物理中扮演着重要角色,它是计算粒子以特定方式发生相互作用概率的核心要素。在胶子体系中,许多树级振幅呈现出令人意想不到的简洁形式,这种简化现象在过去多次为揭示量子场论中更深层次的结构提供了线索。量子场论作为统一狭义相对论和量子力学的物理学描述框架,一直是物理学家们研究的重点领域。
此次研究聚焦于一个长期被认为“不存在”的特殊情形。当有n个胶子,其中仅有1个为负螺旋度,其余n - 1个胶子均为正螺旋度时,按照教科书标准论证,其对应的树级振幅必然为零。这里的螺旋度指的是无质量粒子两种可能自旋取向之一。然而,研究者发现这一结论存在局限性。标准论证基于粒子动量普遍存在的假设,即粒子方向和能量没有处于特殊排列或对齐状态。
经过深入研究,研究者确定了动量空间中一个特定且精确定义的区域,将其命名为“半共线区域”。在这个区域内,胶子动量满足一种不常见但数学上严格定义且自洽的排列或对齐条件,此前基于标准论证得出的振幅为零的结论不再适用。研究结果显示,在这一特定区域中,相关振幅并不为零,并且研究团队在一个特定动力学条件下对其进行了计算。
值得一提的是,在这项研究中,人工智能发挥了重要作用。论文最终给出的核心公式最初由GPT - 5.2 Pro提出猜想。人类研究者首先手工计算了若干整数n的情形,最高计算到n = 6,得到了一组极为复杂的表达式,这些表达式对应费曼图展开,其复杂度随n增长呈“超指数级”上升。随后,GPT - 5.2 Pro对这些复杂表达式进行了大幅化简,给出了更为简洁的形式。基于这些基础案例,GPT - 5.2 Pro进一步识别出模式,提出了一个对所有n都成立的通用公式。
OpenAI内部的一个“带脚手架”的GPT - 5.2版本仅用约12小时对该问题进行推理,就得出了相同的公式,并生成了形式化证明。该公式随后经过解析验证,确认其满足Berends–Giele递归关系,这是从较小构件逐步构造多粒子树级振幅的标准方法。同时,该结果也通过了软定理的检验,即当某个粒子动量趋于“软”极限时,振幅应满足的约束条件。
目前,在GPT - 5.2的协助下,这些振幅结果已经从胶子推广到引力子,更多泛化结果也正在推进中,后续将另行报告。











